Trigonometric Ratios of (90° – θ)
$ \displaystyle \ \ \ \text{In}\ \vartriangle PON,$
$ \displaystyle \ \ \ \sin \theta =y$
$ \displaystyle \ \ \ \cos \theta =x$
$ \displaystyle \ \ \ \tan \theta =\frac{y}{x}$
$ \displaystyle \ \ \ \cot \theta =\frac{x}{y}$
$ \displaystyle \ \ \ \sec \theta =\frac{1}{x}$
$ \displaystyle \ \ \ \operatorname{cosec}\theta =\frac{1}{y}$
$ \displaystyle \ \ \ \sin (90{}^\circ -\theta )=x=\cos \theta $
$ \displaystyle \ \ \ \cos (90{}^\circ -\theta )=y=\sin \theta $
$ \displaystyle \ \ \ \tan (90{}^\circ -\theta )=\frac{x}{y}=\cot \theta $
$ \displaystyle \ \ \ \cot (90{}^\circ -\theta )=\frac{y}{x}=\tan \theta $
$ \displaystyle \ \ \ \sec (90{}^\circ -\theta )=\frac{1}{y}=\operatorname{cosec}\theta $
$ \displaystyle \ \ \ \operatorname{cosec}(90{}^\circ -\theta )=\frac{1}{x}=\sec\theta $
$ \displaystyle \theta$ တန္ဖိုး ရိုက္ထည့္ပါ။
$ \displaystyle \ \ \ \sin \theta =y$
$ \displaystyle \ \ \ \cos \theta =x$
$ \displaystyle \ \ \ \tan \theta =\frac{y}{x}$
$ \displaystyle \ \ \ \cot \theta =\frac{x}{y}$
$ \displaystyle \ \ \ \sec \theta =\frac{1}{x}$
$ \displaystyle \ \ \ \operatorname{cosec}\theta =\frac{1}{y}$
$ \displaystyle \ \ \ \sin (90{}^\circ -\theta )=x=\cos \theta $
$ \displaystyle \ \ \ \cos (90{}^\circ -\theta )=y=\sin \theta $
$ \displaystyle \ \ \ \tan (90{}^\circ -\theta )=\frac{x}{y}=\cot \theta $
$ \displaystyle \ \ \ \cot (90{}^\circ -\theta )=\frac{y}{x}=\tan \theta $
$ \displaystyle \ \ \ \sec (90{}^\circ -\theta )=\frac{1}{y}=\operatorname{cosec}\theta $
$ \displaystyle \ \ \ \operatorname{cosec}(90{}^\circ -\theta )=\frac{1}{x}=\sec\theta $
$ \displaystyle \theta$ တန္ဖိုး ရိုက္ထည့္ပါ။
Posting Komentar untuk "Trigonometric Ratios of (90° – θ) "