Lompat ke konten Lompat ke sidebar Lompat ke footer

Widget Atas Posting

 Tulis Artikel dan dapatkan Bayaran Tiap Kunjungan Rp 10-25 / kunjungan. JOIN SEKARANG || INFO LEBIH LANJUT

Grade 10 - Exponents and Radicals (Multiple Choice Questions)







ဖြေကြည့်ပါ...၊ ရမှတ်နဲ့ အဖြေမှန်ကို ဖော်ပြပေးပါလိမ့်မယ်...။ မည်သည့်တွက်ချက်မှုဆိုင်ရာ ပစ္စည်းကိုမျှ အသုံးပြုခွင့် မရှိပါ။







မှန်သော အဖြေကို ရွေးပေးရန် ဖြစ်ပါသည်။






  1. 1. If $\displaystyle \left( \frac{a}{b} \right)^{x-1} =\left( \frac{b}{a} \right)^{x-3}$ ,
    then the value of $\displaystyle x$ is




























    Explanation




    $\begin{aligned}
    \left(\frac{a}{b}\right)^{x-1} &=\left(\frac{b}{a}\right)^{x-3} \\\\
    \left(\frac{a}{b}\right)^{x-1} &=\left(\left(\frac{a}{b}\right)^{-1}\right)^{x-3} \\\\
    \left(\frac{a}{b}\right)^{x-1} &=\left(\frac{a}{b}\right)^{3-x} \\\\
    \therefore x-1 &=3-x \\\\
    2 x &=4 \\\\
    x &=2
    \end{aligned}$








  2. 2. If $\displaystyle 3^{x-y} =27$ and $\displaystyle 3^{x+y} =243$, then $x=$.




























    Explanation




    $\begin{aligned}
    3^{x-y} &=27 \\\\
    3^{x-y} &=3^{3} \\\\
    x-y &=3 \ldots(1) \\\\
    3^{x+y} &=2 y^{3} \\\\
    3^{x+y} &=3^{5} \\\\
    x+y &=5 \ldots(2)\\\\
    \end{aligned}$


    Solving equations $(1)$ and $(2)$,


    $\begin{aligned}
    &\\
    x&=4
    \end{aligned}$









  3. 3. $\displaystyle \frac{243^{\frac{n}{5}}\times \:3^{2n+1}}{9^n\times 3^{n-1}}=$






















    Explanation




    $\begin{aligned}
    & \frac{243^{\frac{n}{5}} \times 3^{2 n+1}}{9^{n} \times 3^{n-1}} \\\\
    =& \frac{\left(3^{5}\right)^{\frac{n}{5}} \times 3^{2 n+1}}{\left(3^{2}\right)^{n} \times 3^{n-1}} \\\\
    =& \frac{3^{n} \times 3^{2 n+1}}{3^{2 n} \times 3^{n-1}} \\\\
    =& \frac{3^{3 n+1}}{3^{3 n-1}} \\\\
    =& 3^{3 n+1-3 n+1}\\\\
    =&3^{2}\\\\
    =&9
    \end{aligned}$









  4. 4. $\left(\displaystyle \frac{x^{b}}{x^{c}}\right)^{(b+c-a)} \cdot\left(\displaystyle \frac{x^{c}}{x^{a}}\right)^{(c+a-b)} \cdot\left(\displaystyle \frac{x^{a}}{x^{b}}\right)^{(a+b-c)}=$






























    Explanation




    $\begin{aligned}
    &\left(\frac{x^{b}}{x^{c}}\right)^{(b+c-a)} \cdot\left(\frac{x^{c}}{x^{a}}\right)^{(c+a-b)} \cdot\left(\frac{x^{a}}{x^{b}}\right)^{(a+b-c)} \\\\
    =&\left(x^{b-c}\right)^{(b+c-a)}\left(x^{c-a}\right)^{(c+a-b)}\left(x^{a-b}\right)^{(a+b-c)} \\\\
    =& x^{b^{2}+b c-a b-b c-c^{2}+a c} \cdot x^{c^{2}+a c-bc-ac-a^{2}+ab} \cdot x^{a^{2}+ab-ac-ab-b^{2}+bc} \\\\
    =& x^{b^{2}-c^{2}-a b+ac}\cdot x^{c^{2}-a^{2}-bc+ab}\cdot x^{a^{2}-b^{2}-ac+bc} \\\\
    =& x^{0}\\\\
    =&1
    \end{aligned}
    $








  5. 5. The simplified form of $ \dfrac{\dfrac{3}{2+\sqrt{3}}-\dfrac{2}{2-\sqrt{3}}}{2-5 \sqrt{3}}$ is




























    Explanation




    $\begin{aligned}
    &\dfrac{\dfrac{3}{2+\sqrt{3}}-\dfrac{2}{2-\sqrt{3}}}{2-5 \sqrt{3}}\\\\
    &\dfrac{\dfrac{3(2-\sqrt{3})-2(2+\sqrt{3})}{4-3}}{2-5 \sqrt{3}}\\\\
    &=\dfrac{6-3 \sqrt{3}-4-2 \sqrt{3}}{2-5 \sqrt{3}}\\\\
    &=\dfrac{2-5 \sqrt{3}}{2-5 \sqrt{3}}\\\\
    &=1
    \end{aligned}$









  6. 6. If $x=5+2 \sqrt{6},$ then $\sqrt{x}-\displaystyle \frac{1}{\sqrt{x}}=$




























    Explanation




    $\begin{aligned}
    x &=5+2 \sqrt{6} \\\\
    \sqrt{x} &=\sqrt{5+2 \sqrt{6}} \\\\
    &=\sqrt{2+2 \sqrt{2} \sqrt{3}+3} \\\\
    &=\sqrt{(\sqrt{2})^{2}+2 \sqrt{2} \sqrt{3}+(\sqrt{3})^{2}} \\\\
    &=\sqrt{(\sqrt{2}+\sqrt{3})^{2}} \\\\
    &=\sqrt{2}+\sqrt{3}\\\\
    & \sqrt{x}-\dfrac{1}{\sqrt{x}} \\\\
    =& \sqrt{2}+\sqrt{3}-\dfrac{1}{\sqrt{2}+\sqrt{3}} \\\\
    =& \sqrt{2}+\sqrt{3}-\dfrac{\sqrt{2}-\sqrt{3}}{(\sqrt{2}+\sqrt{3})(\sqrt{2}-\sqrt{3})} \\\\
    =& \sqrt{2}+\sqrt{3}-\dfrac{\sqrt{2}-\sqrt{3}}{2-3} \\\\
    =& \sqrt{2}+\sqrt{3}+\sqrt{2}-\sqrt{3} \\\\
    =& 2 \sqrt{2}
    \end{aligned}$









  7. 7. $\displaystyle \frac{2+\sqrt{3}}{2-\sqrt{3}}+\frac{2-\sqrt{3}}{2+\sqrt{3}}+\frac{\sqrt{3}-1}{\sqrt{3}+1}=$




























    Explanation




    $\begin{aligned}
    \frac{2+\sqrt{3}}{2-\sqrt{3}} &=\frac{(2+\sqrt{3})(2+\sqrt{3})}{(2 \sqrt{2})(2+\sqrt{3})} \\\\
    &=\frac{4+4 \sqrt{3}+3}{4-3} \\\\
    &=7+4 \sqrt{3} \\\\
    \frac{2-\sqrt{3}}{2+\sqrt{3}} &=\frac{(2-\sqrt{3})(2-\sqrt{3})}{(2+\sqrt{3})(2-\sqrt{3})} \\\\
    &=\frac{4-4 \sqrt{3}+3}{4-3} \\\\
    &=7-4 \sqrt{3}\\\\
    \frac{\sqrt{3}-1}{\sqrt{3}+1} &=\frac{(\sqrt{3}-1)(\sqrt{3}-1)}{(\sqrt{3}+1)(\sqrt{3}-1)} \\\\
    &=\frac{3-2 \sqrt{3}+1}{3-1} \\\\
    \end{aligned}$

    $\begin{aligned}
    & \quad\frac{2-\sqrt{3}}{2-\sqrt{3}}+\frac{2-\sqrt{3}}{2+\sqrt{3}}+\frac{\sqrt{3}-1}{\sqrt{3}+1} \\\\
    &=7+4 \sqrt{3}+7-4 \sqrt{3}+2-\sqrt{3} \\\\
    &=16-\sqrt{3}
    \end{aligned}$









  8. 8. If $3^{10} \times 27^{2}=9^{2} \times 3^{n}$ then the value of $n$ is




























    Explanation




    Solution 8









  9. 9. $\sqrt{8}+2 \sqrt{32}-3 \sqrt{128}+4 \sqrt{50} =$




























    Explanation




    $\begin{aligned}
    & \sqrt{8}+2 \sqrt{32}-3 \sqrt{128}+4 \sqrt{50} \\\\
    =& \sqrt{4 \times 2}+2 \sqrt{16 \times 2}-3 \sqrt{64 \times 2}+4 \sqrt{25 \times 2} \\\\
    =& 2 \sqrt{2}+8 \sqrt{2}-24 \sqrt{2}+20 \sqrt{2} \\\\
    =& 6 \sqrt{2}
    \end{aligned}$








  10. 10. The value of $(256)^{\frac{5}{4}}$ is




























    Explanation




    $\begin{aligned}
    &(256)^{5 / 4} \\\\
    =&\left(4^{5}\right)^{5 / 4} \\\\
    =& 4^{5} \\\\
    =& 1024
    \end{aligned}$








  11. 11. $(27)^{-\frac{2}{3}}$ lies between




























    Explanation




    $\begin{aligned}
    &(27)^{-\frac{2}{3}} \\\\
    =&\left(3^{3}\right)^{-\frac{2}{3}} \\\\
    =& 3^{-2} \\\\
    =& \frac{1}{3^{2}} \\\\
    =& \frac{1}{9} \\\\
    \therefore\ & 0<\frac{1}{9} <1
    \end{aligned}$








  12. 12. $\displaystyle \frac{3^{0}+3^{-1}}{3^{-1}-3^{0}}=$




























    Explanation




    $\begin{aligned}
    & \dfrac{3^{0}+3^{-1}}{3^{-1}-3^{0}} \\\\
    =& \dfrac{7+\dfrac{1}{3}}{\dfrac{1}{3}-7} \\\\
    =& \dfrac{\dfrac{4}{3}}{-\dfrac{2}{3}} \\\\
    =&-2
    \end{aligned}$








  13. 13. $\displaystyle \frac{2}{\sqrt{7}+\sqrt{5}}+\frac{7}{\sqrt{12}-\sqrt{5}}-\frac{5}{\sqrt{12}-\sqrt{7}}=$




























    Explanation




    $\begin{aligned}
    \dfrac{2}{\sqrt{7}+\sqrt{5}} &=\dfrac{2}{\sqrt{7}+\sqrt{5}} \times \dfrac{\sqrt{7}-\sqrt{5}}{\sqrt{7}-\sqrt{5}} \\\\
    &=\sqrt{7}-\sqrt{5} \\\\
    \dfrac{7}{\sqrt{12}-\sqrt{5}} &=\dfrac{7}{\sqrt{12}-\sqrt{5}} \times \dfrac{\sqrt{12}+\sqrt{5}}{\sqrt{12}+\sqrt{5}} \\\\
    &=\sqrt{12}+\sqrt{5} \\\\
    \dfrac{5}{\sqrt{12}-\sqrt{7}} &=\dfrac{5}{\sqrt{12}-\sqrt{7}} \times \dfrac{\sqrt{12}+\sqrt{7}}{\sqrt{12}+\sqrt{7}} \\\\
    &=\sqrt{12}+\sqrt{7}\\\\
    \therefore \quad & \dfrac{2}{\sqrt{7}+\sqrt{5}}+\dfrac{7}{\sqrt{12}-\sqrt{5}}-\dfrac{5}{\sqrt{12}-\sqrt{7}} \\\\
    =& \sqrt{7}-\sqrt{5}+\sqrt{12}+\sqrt{5}-\sqrt{12}-\sqrt{7} \\\\
    =& 0
    \end{aligned}$











  14. 14. $\sqrt[3]{2^{4} \sqrt{2^{-5} \sqrt{2^{6}}}}=$




























    Explanation




    $\begin{aligned}
    &\ \sqrt[3]{2^{4} \sqrt{2^{-5} \sqrt{2^{6}}}} \\\\
    =&\ \sqrt[3]{2^{4} \sqrt{2^{-5}\left(2^{3}\right)}} \\\\
    =&\ \sqrt[3]{2^{4} \sqrt{2^{-2}}} \\\\
    =&\ \sqrt[3]{2^{4}\left(2^{-1}\right)} \\\\
    =&\ \sqrt[3]{2^{3}}\\\\
    =&\ 2
    \end{aligned}$








  15. 15. The value of $5^{\frac{1}{4}} \times(125)^{0.25}$ is




























    Explanation




    $\begin{aligned}
    &\ 5^{\frac{1}{4}} \times(125)^{0.25} \\\\
    =&\ 5^{\frac{1}{4}} \times\left(5^{3}\right)^{\frac{1}{4}} \\\\
    =&\ 5^{\frac{1}{4}} \times 5^{\frac{3}{4}} \\\\
    =&\ 5^{\frac{1}{4}+\frac{3}{4}} \\\\
    =&\ 5
    \end{aligned}$









  16. 16. If $10^{x}=\displaystyle \frac{1}{2}$ then $10^{-8 x}=$




























    Explanation




    $\begin{aligned}
    10^{x} &=\frac{1}{2} \\\\
    10^{-8 x} &=\left(10^{x}\right)^{-8} \\\\
    &=\left(\frac{1}{2}\right)^{-8} \\\\
    &=2^{8} \\\\
    &=256
    \end{aligned}$









  17. 17. Given that $\sqrt{5}=2.236$ and $\sqrt{3}=1.732,$ then the value of $\displaystyle \frac{1}{\sqrt{5}+\sqrt{3}}$ is




























    Explanation




    $\begin{aligned}
    \sqrt{5} &=2.236 \\\\
    \sqrt{3} &=1.732 \\\\
    \frac{1}{\sqrt{5}+\sqrt{3}} &=\frac{1}{\sqrt{5}+\sqrt{3}} \times \frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}-\sqrt{3}} \\\\
    &=\frac{\sqrt{5}-\sqrt{3}}{2} \\\\
    &=\frac{1}{2}(0.504) \\\\
    &=0.252
    \end{aligned}$









  18. 18. If $2^{x}=\sqrt[3]{32}$, then $x=$




























    Explanation




    $\begin{aligned}
    &2^{x}=\sqrt[3]{32} \\\\
    &2^{x}=(2)^{\frac{5}{3}} \\\\
    &x=\frac{5}{3}
    \end{aligned}$









  19. 19. $\displaystyle \frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}-\frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}}=$




























    Explanation




    $\begin{aligned}
    &\ \frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}-\frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}} \\\\
    =&\ \frac{(\sqrt{3}+\sqrt{2})^{2}-(\sqrt{3}-\sqrt{2})^{2}}{(\sqrt{3}-\sqrt{2})(\sqrt{3}+\sqrt{2})} \\\\
    =&\ \frac{3+2 \sqrt{6}+2-3+2 \sqrt{6}-2}{3-1} \\\\
    =&\ 4 \sqrt{6}
    \end{aligned}$








  20. 20. If $3^{(x+y)}=81$ and $81^{(x-y)}=3,$ then the value of $x$ is




























    Explanation




    $\begin{aligned}
    3^{x+y} &=81 \\\\
    3^{x+y} &=3^{4} \\\\
    x+y &=4 \ldots(1) \\\\
    81^{x-y} &=3 \\\\
    \left(3^{4}\right)^{x-y} &=3 \\\\
    4(x-y) &=3 \\\\
    3^{4(x-y)} &=1 \\\\
    x-y &=\frac{1}{4} \ldots(2)\\\\
    (1)+(2), \\\\
    2 x=\frac{17}{4} \\\\
    x=\frac{17}{8}
    \end{aligned}$













  21. Your Score:





Posting Komentar untuk "Grade 10 - Exponents and Radicals (Multiple Choice Questions)"